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from oxaloacetate as an important precursor, several of 
these acids are covered with the general strategies and 
particular components summarized, including succinate, 
fumarate and malate. Since malate and fumarate are less 
reduced than succinate, the availability of reduction equiv-
alents and level of aerobiosis are important parameters in 
optimizing production of these compounds in various hosts. 
Several other more oxidized acids are also discussed as in 
some cases, they may be desired products or their forma-
tion is minimized to afford higher yields of more reduced 
products. The placement and connections among acids in 
the typical central metabolic network are presented along 
with the use of a number of specific non-native enzymes 
to enhance routes to high production, where available alter-
native pathways and strategies are discussed. While many 
organic acids are derived from a few precursors within 
central metabolism, each organic acid has its own special 
requirements for high production and best compatibility 
with host physiology.

Keywords Oxidation–reduction · Redox · Succinate · 
Fatty acid · Formate · Propionate · Gene · Mutation · 
Metabolism · Pathway · Microbe

Small monoacids

These acids include those of differing chain length and 
uses. The metabolic pathways producing various monoac-
ids from glycolysis are connected; however, many special-
ized enzymes and reactions are used in their formation. As 
the carbon chain length increases the acids become more 
hydrophobic and while this factor can aid separation at 
some point when the chain length is sufficient to allow 
phase separation, the hydrophobic character of fatty acids 

Abstract The review describes efforts toward metabolic 
engineering of production of organic acids. One aspect 
of the strategy involves the generation of an appropri-
ate amount and type of reduced cofactor needed for the 
designed pathway. The ability to capture reducing power 
in the proper form, NADH or NADPH for the biosynthetic 
reactions leading to the organic acid, requires specific 
attention in designing the host and also depends on the 
feedstock used and cell energetic requirements for efficient 
metabolism during production. Recent work on the forma-
tion and commercial uses of a number of small mono- and 
diacids is discussed with redox differences, major bio-
synthetic precursors and engineering strategies outlined. 
Specific attention is given to those acids that are used in 
balancing cell redox or providing reduction equivalents for 
the cell, such as formate, which can be used in conjunction 
with metabolic engineering of other products to improve 
yields. Since a number of widely studied acids derived 
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of intermediate length can also increase toxicity and limit 
cell growth [5, 10, 12]. The longer chain monoacids also 
require a high amount of reduction equivalents in their for-
mation, which must be taken into account in devising effi-
cient routes to these valuable molecules.

Formic acid

Formic acid formation and utilization have been reviewed 
[44]. Major industrial uses of formic acid are in leather 
and textile processing, cleaning and descaling, to maintain 
pH and as a deicer, salts are used in oil field operations for 
removal of carbonates and in desulfurization processing 
flues. The approximate general price for formate salts is 
$400 per MT, while the acid is more generally in the $600–
$900 per MT depending on location and purity. Formate is 
also used as a counterion in pharmaceutical formulations 
but its interest here is its use as a redox carrier in enzyme or 
cellular processes where it can be used to generate reduct-
ant for specific reactions.

In Escherichia coli and other organisms that metabolize 
sugars by glycolysis, formate is produced by the pyruvate-
formate-lyase enzyme, a glycyl radical enzyme [169, 172] 
that is subject to activation and inactivation mechanisms 
[168]. Formate can also be produced biologically through 
reduction of CO2 using special formate dehydrogenases [5] 
and through the degradation of oxalate [181]. There have 
been significant efforts in chemical catalysis to produce 
formate from CO2 and hydrogen using metal catalysts [61, 
137] or through photo-catalyzed reactions [6, 23, 79, 194]. 
Production of formate through coupling formate dehydro-
genases to electrodes has also generated recent interest 
[153, 175] and in the more general use of such technology 
in electro formation of useful chemicals [127].

Formate synthesis by a number of clostridium species, 
e.g. C. sporogenes, C. thermocellum, C. phytofermentans 
sp. nov, C. thermoaceticum (now Moorella thermoacetica) 
[126, 174, 200, 215], is known and the action of formate 
dehydrogenase to generate formate for further reduction 
and incorporation via an acetogenic pathway is also well 
established [185, 186, 196].

There has been little work on the production of formate 
as a final product via engineered microbes and reports have 
generally focused on the subsequent direct use of formate as 
a redox carrier for a reductive reaction to give a larger yield 
of a more desired compound. A number of these uses of for-
mate and a NADH-coupled formate dehydrogenase such as 
the NAD+-dependent formate dehydrogenase from Candida 
boidinii or other species that convert 1 mol of formate and 
NAD+ into 1 mol of NADH and CO2 [17–19, 162] have 
been reported including: contributing additional redox for 
improved succinate yield [10, 119], use of electrochemi-
cally formed formate in chemical production [111], use of 

formate to provide a redox driving force for fuel molecule 
production [170] and in mannitol formation [90].

Acetic, pyruvic and lactic acids

Acetate, pyruvate and lactate are small organic acids with 
close ties to the glycolytic pathway for the metabolism of 
glucose. The production of these compounds has been stud-
ied extensively from scientific and industrial points of view. 
Here, we will point out a few recent reviews for readers but 
do not have the space to cover these in detail. These mol-
ecules are often side products of microbes that are being 
engineered for production of other compounds so strains 
that minimize formation of these side products are a desir-
able feature. Acetate can be formed in many organisms by 
decarboxylation of pyruvate in a PoxB-type mechanism, typ-
ically being coupled to membrane redox processes or by first 
conversion to acetyl-CoA and then conversion through an 
acetyl-phosphate intermediate that produces ATP for cellular 
energy. If pyruvate is not metabolized at a rate consistent to 
its synthesis, it can build up and is excreted for later uptake 
and use. Lactate can serve as a final product in anaerobic 
conditions as it can recycle the reductant formed in glyco-
lysis and pyruvate formation and can also be consumed later 
as a carbon and energy source when oxygen levels are high. 
Recent reviews on acetate formation via syngas [14] or tra-
ditional fermentations [30, 54, 86] have shown high yields 
from various feedstocks. Production of pyruvate in bacterial 
and fungal systems has been reviewed [135, 202, 204, 213]. 
Lactate production by various bacteria and yeasts [2, 80, 
135, 159, 165, 202, 204] are well covered in the literature.

Propionic acid

The most common consumer item containing propi-
onic acid (PA) is swiss style Emmental cheese, where the 
organic acid is formed by Propionibacterium during aging, 
giving the cheese a distinctive flavor. PA is widely used in 
the food industry as a preservative or as esters that have a 
fruity essence. It is also used in animal feed where it can 
improve feed utilization and health. Industrially, a major 
use of propionic acid is in the formation of cellulose ace-
tate-based polymers. Propionic acid bulk prices are around 
$1,500–2,000 MT with calcium or sodium salts slightly less 
per ton with an overall annual volume of ~380,000 MT. In 
nature, propionic acid is formed by Propionibacterium and 
Clostridium species by two general routes (Fig. 1). Propi-
onibacterium freudenreichii forms the three-carbon acid 
by conversion of succinyl-CoA to methylmalonyl-CoA by 
a methylmalonyl-CoA epimerase and mutase and then in 
a reaction with pyruvate gives propionic acid and oxaloac-
etate in a reaction catalyzed by transcarboxylase, called 
the Wood–Werkman cycle. In organisms like Clostridium 
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propionicum or Megasphaera elsdenii the acrylate path-
way is used. This pathway converts lactate directly to 
propionic acid via formation of lactoyl-CoA, its dehydra-
tion to form acryloyl-CoA and reduction by acryloyl-CoA 
reductase to generate propionyl-CoA. The propionyl-CoA 
can be exchanged with lactate to form the lactoyl-CoA 
and release propionic acid. A key enzyme is the acryloyl-
CoA reductase enzyme, which appears like the bifurcating 
butyryl-CoA dehydrogenase enzyme of clostridium that is 
used in the formation of butyrate. However, this enzyme, 
although it also has electron-transferring flavoproteins as a 
component of the complex, seems capable of using NADH 
directly [72] even though acryloyl-CoA (E°′ = + 69 mV) 
would be well suited to a bifurcation mechanism, consider-
ing that crotonyl-CoA (E°′ = −10 mV) is reduced by this 
mechanism. It has been proposed that the propionyl-CoA 
dehydrogenases/EtfBC complexes from C. propionicum, C. 
homopropionicum and M. elsdenii may have lost bifurca-
tion function to better handle the highly reactive toxic acry-
loyl-CoA [25].

Since the formation of propionyl-CoA requires addi-
tional reduction compared to lactate, the biosynthesis from 
glucose will require oxidation of some of the lactate (1/3) 
to generate reductant for formation of propionic acid from 
the other 2/3 lactate or supply of reductant from another 
source, so overall it has a limit on the yield of ~1.3 mol of 
propionic acid from one molecule of glucose if formed via 
typical glucose to lactate EMP pathway. Since the Propion-
ibacterium generates the acid from succinyl-CoA and pyru-
vate, its yield is dependent on the substrates used to form 
those key intermediates; from glucose it would be ~1.3 as 
well, but from a mixture of glucose and glycerol a higher 
carbon conversion is possible [124].

A number of articles have explored microbial production 
[57, 121, 226], different feedstocks especially with glycerol 
supplementation, and culture optimization of various Propi-
onibacterium strains for high yield production under differ-
ent protocols, immobilization or adaptation of cells [180, 
207]. An example that includes an economic perspective is 
reported by Dishisha et al. [51]. The effect of redox poten-
tial was studied and could be optimized to give a very high 
proportion of propionic acid in the total acids (92 %) with 
high glycerol conversion (76 %) and the authors concluded 
that optimal control of redox potential during growth could 
provide a means to generate highly selective propionic acid 
production from glycerol [33].

A number of genetic studies have included efforts 
to overproduce or knock out key enzymes. Knock out of 
the acetate kinase led to a reduction of growth rate and a 
decrease in acetate and an increase in propionate yield by 
13 % [179]. Overproduction of phosphoenolpyruvate car-
boxylase allowed the cells to grow faster, consume more 
glycerol, and more quickly form propionate to a higher 
final titer. The engineered strain also produced more pro-
pionate from glucose under conditions of high CO2 [7]. 
In another study of production from glycerol, the glycerol 
dehydrogenase gene (gldA) from Klebsiella pneumoniae 
was expressed in Propionibacterium jensenii ATCC 4868. 
PA production was 28 g/L, a value 26 % higher than that of 
the corresponding culture of the wild-type parental strain 
[236].

Butyric acid

Butyric acid, found as an ester in butter, has a variety of 
industrial uses [53] including altering the consistency of 
cellulose acetate polymers, and there are many applications 
in the food industry of butyrate esters and butyrate as an 
animal feed additive. In nature, butyrate is formed in the 
intestinal tract and has a number of positive effects on gut 
development and health, and the use of butyrate additives 
has also been examined [43, 65, 67, 190, 191].

Bacterial production of butyric acid has been 
reviewed [228]. The current bulk prices of butyric acid 
or sodium butyrate are in the range $2,000–$4,000 per 
MT. A number of organisms produce butyric acid as a 
fermentation product from metabolism of sugars via gly-
colysis and acetyl-CoA. Solventogenic clostridial spe-
cies make acetate and butyrate during the early growth 
phase, then re-uptake them and convert them into alco-
hols as the culture goes through stationary phase. Other 
species of clostridia make acids only and among those, 
Clostridium tyrobacterium has been the most well stud-
ied. The relative production of acetate vs butyrate by the 
organism is affected by the host’s need for ATP which 
is formed when each mole of the acid is generated from 

Fig. 1  The two routes to propionic acid found in Propionibacterium 
freudenreichii and Clostridium propionicum. The upper pathway from 
pyruvate and the coenzyme transferase in blue and purple shows the 
route found in Clostridium and the bottom route from succinate and 
using a transcarboxylase reaction in orange and a coenzyme trans-
ferase in green is found in Propionibacterium
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the CoA derivative, the added reductant available and 
required to form butyrate vs acetate and the competing 
pathways for use of reductant, e.g. in hydrogen or lactate 
formation (Fig. 2).

A number of workers have noticed that the addition of 
certain redox active dyes, such as neutral red or methylvi-
ologen, to the culture generates an altered pattern of prod-
ucts and in the solventogenic clostridia where butanol is the 
major desired product, a higher ratio of butanol is formed 
[151]. Less information about the role of such dyes on 
the butyrate vs acetate ratio has been discussed. Examina-
tion of literature and our experiments with these and other 
redox active molecules such as phenazines and TNT [26] 
has shown that increased ratios of the longer chain length 
acid, butyrate to acetate are formed in the treated cultures. 
The redox dyes can act to short circuit the e-transfer and 
provide an extra-route to coupling the redox needed for 
synthesis of butyrate. The two redox reactions involved in 
forming butyrate from acetyl-CoA are the reduction of ace-
toacetyl-CoA to hydroxybutyryl-CoA and then after dehy-
dration, the reduction of crotonyl-CoA to butyryl-CoA. The 
midpoint redox potentials of these reactions are −240 and 
−10 mV [70] and the latter shows a large difference from 
that of NADH (−320 mV), the main redox carrier other 
than ferredoxin. The use of electrode and dye-mediated 
redox has been studied in various clostridial cultures, and 
electrodes coupled to neutral red (Em = −325 mV) have 
been used to form high levels (~55 g/L) of butyrate by C. 
acetobutylicum KCTC1037 [88] with low acetate in methyl 
viologen (Em = −440 mV) mediated cultures of Clostrid-
ium tyrobutyricum BAS 7 [40].

Shifts in the formation of metabolites are also observed 
upon inhibition of hydrogenase by CO, which then diverts 
the redox from low-potential reduced ferredoxin to the 
reactions involved in the formation of longer chain acids 
and alcohols [93]. Other studies using substrates of differ-
ing redox states such as glycerol and pyruvate also showed 
this shift toward a higher proportion of butyrate vs acetate 
[63, 146, 147, 192]. In contrast addition of iron oxide nano-
particles produced a higher acetate proportion [136]. The 
addition of anthrahydroquinone-2,6-disulfonate (AQDS, 
Em = −184 mV) was reported to increase hydrogen yield 
and reduce butyrate levels in cultures of Clostridium bei-
jerinckii grown on xylose [219]. Butyrate production was 
also reported to be enhanced by reduced electron shuttles 
in growing cells [66, 69]. In Clostridium sp. BC1 AQDS, 
addition in a bicarbonate media showed no change in 
metabolite pattern while methylviologen shifted the metab-
olites toward butanol and ethanol [217].

The formation of butyrate by the bifurcating system is 
more complex in clostridium and less suitable for use in 
aerobic organisms although an oxygen-tolerant bifurcat-
ing butyryl-CoA dehydrogenase has been reported [3] 
than in organisms where the crotonyl-CoA is reduced by 
an enzyme directly using NADH [195]. The ter enzyme 
from Treponema denticola has been used to carry out this 
reaction in engineered E. coli [48, 170]. In engineered 

Fig. 2  Redox distribution in early acidic growth stage of C. aceto-
butylicum. Some of the NADH produced in glycolysis is used along 
with the reduced ferredoxin to form hydrogen and yield an approxi-
mately equal proportion of butyrate and acetate. When the route to 
hydrogen is limited more of the longer chain acid, butyrate is formed. 
The numbers along the enzyme reactions show the flux in that reac-
tion in normal early stage growth
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E. coli where the butyrate pathway enzymes including 
ter were placed on a scaffold, butyrate production was 
improved [9]. The engineered strain carried mutations in 
atoAD and pta, elimination of adhE, ldhA, frdABCD path-
ways and replacement of the NADPH-dependent path-
way for formation of crotonyl-CoA with theheterologous 
NADH-utilizing pathway by overexpressing hbd (encod-
ing 3-hydroxybutyryl-CoAdehydrogenase) and crt (encod-
ing crotonase) from C. acetobutylicum, ter (encoding 
trans-enoyl-CoAreductase) from T. denticola, and native 
acyl-CoA thioesterase tesB to form butyrate from butyryl-
CoA. The strain was effective in converting low concentra-
tions of glucose (11 g/L) to butyrate in high yield with a 
ratio of butyrate:acetate of 41 [116]. The absence of other 
routes to recycle NADH to NAD+ favored the production 
of butyrate.

A pyrimidine nucleotide-based reduction reaction series 
has been used to form butyrate by reversal of the normal 
fatty acid degradation pathway in E. coli [42, 49]. This sys-
tem involving engineered reversal of the β-oxidation cycle 
uses the following genes and activities: thiolase (fadA or 
atoB), hydroxyacyl-CoA dehydrogenase (fadB), enoyl-
CoA hydratase (fadB), acyl-CoA dehydrogenase (ydiO, 
fadE, or ter) and a thioesterase to remove the butyrate from 
the CoA. The system has been adapted for the production 
of fatty acids and esters in an engineered yeast [114].

Another pathway for the formation of butyrate employs 
the ATP-requiring reaction to form malonyl-CoA from 
acetyl-CoA. The malonyl-CoA then serves as an addition 
substrate coupling to acetyl-CoA to form the acetoacetyl-
CoA in a reaction similar to the enzymes of fatty acid syn-
thesis or polyketide synthesis. The reaction catalyzed by 
NphT7 of Streptomyces sp. strain CL190 [143] is suitable 
for aerobic organisms and where there may be abundant 
ATP. The driving force can enable increased formation of 
butyryl-CoA-derived products [104].

In clostridium, there have been a number of genetic 
investigations motivated by increasing interest in biofuel 
butanol and the effort to generate more valuable longer 
chain length organic acids and alcohols for fuels and chem-
icals. Recently, the bifurcating nature of the crotonyl-CoA 
to butyryl-CoA reaction in clostridium has been determined 
where the reaction of 2NADH forms a reduced ferredoxin 
at the same time as the double bond reduction by an elec-
tron-transferring flavoprotein enzyme complex [25, 41]. 
The finding of different reactions for reduction of crotonyl-
CoA and the development of genetic tools for clostridium 
has allowed more elaborate genetic experiments to be per-
formed. Application of these methods has been used to 
examine and alter redox pathways related to the production 
of butyrate in clostridium.

The deletion of several genes (pta, bukI, ctfB, adhE1 and 
hydA) and addition of the bukII gene of C. acetobutylicum 

allowed high production of butyrate (32.5 g/L) and low 
acetate [82]. Studies of C. acetobutylicum, where the adc, 
ctfA and pta were knocked out, showed that acetate produc-
tion was drastically reduced with increased butyrate [110]. 
The importance and broader specificity of acid forming 
were illustrated in the study of a phosphotransbutyrylase 
mutant of C. tyrobutylicum where the butyrate:acetate ratio 
was decreased but higher levels of both acids were formed 
[233]. An acetate kinase mutant of C. tyrobutylicum pro-
duced more butyrate and hydrogen than wild type on glu-
cose, and on xylose at pH 5 produced butyrate (0.43 g/g 
xylose) rather than the acetate and lactate primarily formed 
by wild type [123]. The use of immobilized adapted C. 
tyrobutyricum in a fibrous-bed bioreactor gave a butyrate 
concentration in fed-batch culture of 86.9 g/L [89], and the 
method has been used with sugarcane bagasse hydrolysate 
[201].

Longer chain monofunctional acids

Free fatty acids which can be used as precursors for the 
production of fuels or chemicals have attracted significant 
attention in recent years [68, 108, 141, 158]. The pathways 
for fatty acid biosynthesis are detailed in Fig. 3. Briefly, the 
precursor for fatty acid biosynthesis is derived by acetyl-
CoA and follows a sequence of condensation, reduction, 
dehydration and reduction reactions. In each cycle, two 
carbons are added from malonyl-ACP to a growing acyl 
chain and the resulting β-keto group is reduced to eventu-
ally yield a saturated C–C bond. The acyl-ACP thioester-
ase terminates fatty acyl group extension by hydrolyzing 
the acyl moiety from the acyl-ACP at the appropriate chain 
length, releasing free fatty acids [113, 160, 171, 187, 230]. 
Different acyl-ACP thioesterases have different degrees of 
chain length specificity [45], which can be varied from C8 
to C18.

There are two reduction steps in each elongation cycle 
which are catalyzed by FabG and FabI, respectively. It is 
reported that FabI can use either NADH or NADPH as 
cofactor, while FabG only uses NADPH in E. coli [16]. To 
a growing fatty acid chain, every elongation cycle adds 2 
carbon atoms and requires 2 redox equivalents, resulting in 
14 NAD(P)H to form a 16-carbon fatty acid. There must be 
an efficient pathway to convert the NADH to NADPH. In 
E. coli cells, it can be achieved by transhydrogenases and 
NAD kinase. Depending on the redox state of cell, NADH 
can be converted to NADPH via proton-translocating tran-
shydrogenase PntAB and a transhydrogenase UdhA [81, 
164, 166]. The NAD+ kinase encoded by nadK catalyzes 
the conversion of NAD+ to NADP+ through phospho-
rylation using ATP as the phosphoryl donor [91]. Several 
other strategies to increase intracellular NADPH avail-
ability, such as replacing native NAD-dependent GAPDH 
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with NADPH-dependent variants, have been examined 
and reported [130, 197–199]. It has been shown that these 
NADPH manipulations significantly increase medium-
chain fatty acid titers and yields [163, 208]. Another 
approach is to replace the native NADPH-dependent 
(FabG) to NADH-dependent 3-oxoacyl-ACP-reductase 
(FabG) with a NAD-dependent variant [87, 112] with a sig-
nificant increase in both fatty acid titer and yield [112].

Diacids

The group of diacids includes oxalic acid, malonic acid 
and the longer 4- or 5-carbon acids primarily derived from 
reactions of oxaloacetate and these are covered in some 
depth below. The 2- and 3-carbon diacids are commonly 
found in some plants and fungi; however, there has been 
relatively little metabolic engineering for the production of 
these acids. As highly oxygenated carbon compounds, they 
are somewhat outside the scope of this review. Some recent 
reviews on oxalic acid production and metabolism [60, 62, 
129] and malonic acid that emphasizes the role of malonyl-
CoA in fatty acid and polyketide synthesis and the general 
inhibitory role of malonate [35, 98, 148] have been pub-
lished and are referenced for readers as an introduction to 
those specialized small diacids.

Succinic acid

Succinic acid is a C4-dicarboxylic acid recognized by US 
Department of Energy as one of the top 12 biomass-derived 
building block chemicals having numerous applications in 
food, pharmaceutical, polymer, surfactants and detergents, 
flavors and fragrances, textile industries and fine chemi-
cals. Various review articles have described advances made 
in last two decades of research towards biobased succinic 
acid production [28, 37, 83, 183]. While many organisms 
have been reported to produce succinate at low levels, some 
of the native and recombinant major succinate producers 
are E. coli, Actinobacillus succinogenes, Anaerobiospiril-
lum succiniciproducens, Mannheimia succiniciproducens, 
Corynebacterium glutamicum, Basfia succiniciproducens, 
Saccharomyces cerevisiae and Candida krusei. The global 
production rate of succinic acid based on petrochemical 
processes is between 30,000 and 50,000 tons per year with 
a current market price of $6,000–9,000 per ton. Several 
companies and their joint ventures such as Myriant Tech-
nologies, BioAmber and Mitsui, Succinity (BASF/Corbion 
Purac) and Reverdia (DSM/Roquette) have been active in 
setting up demonstration or commercial biobased succinate 
production plants [83, 183].

Figure 4 shows metabolic routes for succinate produc-
tion in E. coli. Fermentative production of succinate with 

Fig. 3  Fatty acid biosynthesis pathway and involved cofactor NAD(P)H balance in E. coli
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high yield and productivity under aerobic and anaerobic 
conditions using glucose and biomass sugars have been 
reported [4, 34, 184, 235]. The downstream processing of 
succinate has been described in several reports [38, 101, 
144] and is critical to the cost of overall process econom-
ics. Various metabolic engineering strategies such as acti-
vation of glyoxylate pathway, improved glucose transport 
system, enhanced ATP supply, knockout of competing 
pathway genes, over expression of pyruvate-metabolizing 
enzymes and many others have been applied to improve the 
succinate production [37, 183]. Another important strategy 
relevant to this review is redox manipulation by providing 
additional reducing power to improve succinate yield. This 
has been demonstrated via use of more reduced carbohy-
drates (such as sorbitol) [32, 76], reducing agent dithio-
threitol [128], hydrogen as electron donor in the head space 
gas [189] and increasing in vivo NADH availability [17].

Fermentative metabolites are greatly influenced by 
NADH availability as evidenced by previous studies in 
our laboratory using carbon sources with different oxida-
tion states or genetic manipulations such as overexpress-
ing an NADH-regenerating enzyme such as the NAD+-
dependent formate dehydrogenase (FDH; EC 1.2.1.2) 
from Candida boidinii that converts 1 mol of formate 
and NAD+ into 1 mol of NADH and CO2 [17–19, 162]. 
The native formate dehydrogenase converts formate to 
CO2 and H2 with no cofactor involvement. The newly 
introduced yeast FDH retains the reducing power that 
was otherwise lost by the release of formate or H2 in the 
native pathway (Fig. 4). Recently, the application of C. 

boidinii FDH in high succinate-producing engineered E. 
coli SBS550MG(pHL413KF1) to retain the reducing power 
of formate as NADH and thereby minimizing byproduct 
formate production in succinate fermentation has been 
reported [10]. Increased in vivo availability of NADH 
resulted in twofold improvements in succinate productivity 
and about 80 % reduction in formate in fed-batch cultures of 
SBS550MG(pHL413KF1). Furthermore, external formate 
supplementation to cultures of SBS550MG(pHL413KF1) 
resulted in about 6 % increase in succinate yields indicating 
that the engineered strain is capable of handling increased 
redox availability. Another recent study has also utilized an 
NAD+-coupled formate dehydrogenase from Mycobacte-
rium vaccae in engineered Corynebacterium glutamicum 
BOL-3/pAN6-gap for anaerobic production of succinate by 
co-utilization of glucose and formate as an additional donor 
of reducing equivalents [119]. The engineered strains of C. 
glutamicum BOL-3, BOL-3/pAN6 and BOL-3/pAN6-gap 
showed a significant increase in the succinate yield in the 
presence of formate (1.3–1.4 mol/mol) compared to that its 
absence (1.0–1.1 mol/mol).

In addition to formate dehydrogenase, other enzymes 
improving NADH availability have been reported. Exam-
ples of these include enhancement of succinate production 
by regulating NADH pool and NADH/NAD ratio via nico-
tinic acid phosphoribosyltransferase (NAPRTase) encoded 
by the pncB gene, a rate-limiting enzyme of NAD(H) syn-
thesis pathway [115, 128], and E. coli PntAB transhydro-
genase that enhances the conversion of NADPH to NADH 
in C. glutamicum under microaerobic conditions, and the 

Fig. 4  Metabolic routes and 
involved cofactor for succi-
nate production from glucose, 
glycerol and sucrose in E. coli. 
The asterisk on fdh indicates 
the NAD+-dependent formate 
dehydrogenase from Candida 
boidinii that regenerates NADH 
from formate. Black X indicates 
deletion of corresponding genes 
for competing pathway
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increased NADH/NAD+ ratio results in increased succinic 
acid production [216].

Fumaric acid

Fumaric acid is an unsaturated four-carbon dicarboxylic 
acid naturally produced as an intermediate of the tricarbox-
ylic acid cycle (TCA). It is 1.5× more acidic than citric acid 
and has been used as a food and beverages acidulant since 
the 1940s [214]. Fumaric acid serves as a starting material 
for l-malic and l-aspartic synthesis, which are also used in 
the food industry, e.g. in sweeteners and beverages. In addi-
tion, fumaric acid is currently used for the production of 
biodegradable polymers, plasticizers and polyesters resins 
[155], as well as a supplement in animal feed reducing the 
cattle methane emissions significantly [132]. More recently, 
some medical applications of fumaric acid derivatives have 
been discovered, such as the use of fumaric acid dimethyl 
ester to treat psoriasis and multiple sclerosis [92, 154]. Con-
sequently, the number of applications is increasing; hence, 
the demand for fumaric acid and its derivatives is rising.

Fumaric acid production by fermentation has been pri-
marily studied in filamentous fungi of the Rhizopus genus, 
such as R. oryzae, R. nigricans and R. arrhizus [178]. Sev-
eral studies have shown that the carbon to nitrogen ratio in 
the culture medium is a key factor in fumaric acid accumu-
lation in Rhizopus species, where nitrogen limitation favors 
malic acid conversion into fumaric acid [50, 155]. Despite 
the high product titer reached, up to 126 g/L, with Rhizo-
pus species, their filamentous characteristic and ability to 
form cell aggregates make the scaling up of the process 
difficult, and is especially challenging to control the oxy-
gen transfer in the implementation of a large-scale process 
[155, 214]. Moreover, the industrial-scale use of Rhizopus 
species is questionable due to their potential pathogenicity 
[210]. However, a few nonspecific mutations (UV, chemi-
cal) have been performed and improved strains have been 
selected, although they are still far from a commercial use 
[214]. Only a few genetic tools are available for Rhizopus 
species genetic modifications, thus strain improvement for 
fumaric acid production has not been widely studied. Never-
theless, recently Zhang et al. [227] reported the construction 
of metabolic engineered R. oryzae strains for fumaric acid 
biosynthesis from glucose. The strains overexpressed endog-
enous pyruvate carboxylase (PYC) or exogenous phospho-
enolpyruvate carboxylase (PEPC) from E. coli to increase 
carbon flux toward oxaloacetate and thus to fumarate. The 
results showed an increase of 26 % in fumaric acid for the 
PEPC-expressing strain compared to wild type, on the con-
trary the PYC-overexpressing strain showed significantly 
lower fumaric acid production than wild type. The last strain 
showed poor cell growth and the formation of large pellets. 
Fumaric acid yield decreased drastically while ethanol yield 

increased, presumably due to oxygen limitation caused by 
the increase in cell pellet size in this strain [227].

Since the industrial-scale use of Rhizopus species is 
questionable, the use of GRAS (generally recognized as 
safe) strains such as Saccharomyces cerevisiae for fuma-
ric acid production is becoming an attractive alternative. 
Although S. cerevisiae does not accumulate fumaric acid 
naturally, metabolic engineering tools are available for the 
construction of fumaric acid producing strains. Xu et al. 
[211, 212] reported fumaric acid production in a S. cerevi-
siae strain overexpressing the malate dehydrogenase from 
R. oryzae as well as overexpressing the native pyruvate car-
boxylase, leading to 3.18 g/L of fumaric acid from glucose, 
where the control strain did not produce detectable amounts 
of fumaric acid. Further strain improvement was reported 
[210] where pyruvate carboxylase, malate dehydroge-
nase and fumarase from R. oryzae were overexpressed in 
a pyruvate-producing strain background and when biotin 
was added to the culture medium titer reached 5.64 g/L 
of fumaric acid in nitrogen-limited culture. Despite the 
advances in fumarate production by metabolic engineered 
S. cerevisiae, fumarate production is still far from the levels 
reached with Rhizopus species.

Fumaric acid production has been recently explored in 
metabolic engineered E. coli strains. Figure 5 shows meta-
bolic engineering approach for fumaric acid production in 
E. coli. Song et al. [173] reported the construction of sev-
eral metabolic engineered E. coli strains for fumaric acid 
production. The highest producing strain had the iclR gene 
deleted to activate the glyoxylate shunt, fumarases genes 
fumA, fumB, fumC deleted to increase fumaric acid for-
mation, native phosphoenolpyruvate carboxylase (PPC) 
overexpressed to increase carbon flux to oxaloacetate, 
arcA and ptsG genes deleted to enhance the TCA oxida-
tive branch, the aspA gene deleted to avoid fumaric acid 
conversion into l-aspartic acid, lacI gene deleted to avoid 
inducer requirement and the native promoter of the galP 
gene was replaced by the strong trc promoter. This strain, 
named CWF812, produced 28.2 g/L of fumaric acid from 
glucose with a yield of 0.389 g fumaric acid/g glucose in a 
fed-batch fermentation in aerobic conditions [173].

On the other hand, significant amounts of fumaric acid 
are accumulated in some plants such as Arabidopsis thaliana 
and soybean. In A. thaliana, fumaric acid can accumulate 
in levels exceeding those of starch and soluble sugars, e.g. 
several milligrams per gram of fresh weight. Fumaric acid 
accumulation in this plant increases with age and light inten-
sity in the leaves [39]. Fumaric acid is thought to be used as 
an alternative carbon sink to starch in the leaves specifically 
under rapid growth when high nitrogen is present and may 
contribute to maintain cellular pH [150]. To the extent of our 
knowledge no metabolic engineering has been performed yet 
to improve fumaric acid accumulation in plants.
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Malic acid

As one of the family of 1,4-diacids, malic acid is a desir-
able chemical. The production of malic acid by engineered 
organisms has been recently reviewed in the context of 
other 4-carbon diacids [27, 122]. The review of the key 
metabolic node at phosphoenolpyruvate–pyruvate–oxaloac-
etate, and its importance in the formation of diacids and cell 
carbon flux served in subsequent development of metabolic 
engineering strategies [167]. The dehydrated form of this 
4-carbon compound is produced and used in large quan-
tity as maleic anhydride. The global production of maleic 
anhydride is around 1 million MT/yr. The chemical manu-
facture of maleic anhydride arises from oxidation of ben-
zene, butane or butene and as a byproduct of phthalic acid 
production. It is widely used in the formation of alkyl and 
unsaturated polyester resins and coatings. The compound 
is converted to many derivatives, e.g. hydroxybutyrolac-
tone. A compilation of chemical conversions of malic acid 
to many specialty chemicals is provided in a recent report 
from Huntsman Chemical [56]. Current bulk price of 
malic acid is ~$1,700/MT in China, and with US suppliers 
$2,000–3,000 MT. There also has been interest in the spe-
cial properties of polymalate for medical applications such 
as in drug delivery systems [58, 97, 125]. Another major 

bulk use is in the food and feed industry, where malate is 
used as an acidulant and flavor enhancer, and additive–
preservative. Calcium citrate malate is a widely used 
source of calcium that does not increase the risk of kidney 
stones while aiding bone strength [127]. While magnesium 
hydroxide is around $200 MT and calcium hydroxide is 
$120 MT, the price for Mg-malate is around $7,000 MT 
and calcium malate is $3,000 MT. l-malate as a precur-
sor chemical in the pharmaceutical industry; these are high 
value but limited volume applications.

While malate is formed in plants to some extent it is not 
naturally a major metabolite released by bacteria; however, 
studies on metabolic engineering of malate production in 
bacteria have received attention [139]. The status of malate 
as requiring one reduction form oxaloacetate, in compari-
son to the two required for succinate, would seem to make 
the production easier as the reductant formed in glycolysis 
could be used in the reduction of oxaloacetate to malate. 
Efficient formation of oxaloacetate from the three carbon 
compounds formed by glycolysis with best energy effi-
ciency would seem like an attractive route as is the case 
with succinate. Work has mainly been oriented toward this 
general principle. The malic enzyme has been used in a 
route to produce succinate via malate in E. coli [75, 102, 
177]. Strains of E. coli derived from introducing known 

Fig. 5  Escherichia coli central 
metabolic pathways and meta-
bolic engineering approach for 
fumaric acid production. Red 
X indicates corresponding gene 
deletion. Thick arrows indicate 
increased expression (adapted 
from [173])
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mutations in ldhA, adhE, ackA, focA, pflB, mgsA, as well 
as evolving the strain for many generations under selective 
growth conditions, can form not only malate in consider-
able quantity (56 % of moles of product) but also succinate 
(26 % of moles of product) as well as acetate (7 % of moles 
of product) and pyruvate (6 % of moles of product) [85]. 
Strains with a mutation in frdBC, and deletion of sfcA and 
maeB, pyruvate kinase, fumABC and ldhA, ackA, adhE, 
pflB produced a titer of 34 g/L with a yield of 1.42 mole 
malate per mole of glucose [232].

The engineering of malate production in Saccharomyces 
cerevisiae [1] under conditions of calcium carbonate-sup-
plemented cultures generated a titer of 59 g/L and a yield 
of 0.48 mole/mole under optimized conditions [225]. Engi-
neering Torulopsis glabrata by overexpression of pyruvate 
carboxylase and malate dehydrogenase produced 8.5 g/L 
malate [36]. Efforts with Aspergillus oryzae NRRL 3488 
have yielded superior strains. The best strain had an over-
expressed C4-dicarboxylate transporter, cytosolic pyru-
vate carboxylase and malate dehydrogenase, and formed a 
titer of 154 g/L malate with 69 % of theoretical yield [24]. 
In another approach, an in vitro conversion of glucose to 
malate was achieved using thermophilic enzymes and a set 
of enzymes from a non-ATP-forming glycolytic pathway. 
The system produced malate at 60 % molar yield [218]. 
Current efforts toward production of this compound are 
focused on increasing yield while maintaining a high con-
centration of product.

Tartaric and Itaconic acids

While not requiring reduction of its precursor intermediate, 
these two compounds are derived from similar nodes and 
precursors as other diacids discussed in this review so they 
will be covered here briefly. In the case of these compounds 
the main metabolic engineering goal is to supply the key 
precursors for synthesis, i.e. oxaloacetate and acetyl-CoA, 
and afford recycling of NADH formed in earlier steps of the 
sugar-metabolizing pathways, allow energy for cell growth, 
and allowing high-concentration product accumulation and 
tolerance. Some aspects of the biochemical processes and 
limitations of particular pathways are also discussed.

Tartaric acid, a four-carbon diacid bearing two hydroxyl 
groups, exists as the L(+) form in nature, with D and meso 
forms also known as well as racemic mixtures of forms. 
It is found in many plants and is found in wine, provid-
ing some of the tartness. It is used in the food industry as 
an antioxidant and emulsifier, with soft drink, candy and 
baked products being major users. The diacetyl esters are 
used in baking. The chemical salts, potassium bitartrate 
(cream of tartar) and calcium tartrate, are well known and 
are used as food preservatives. Tartaric acid is also used as 
a finishing agent for fibers and in metal processing. The 

market for tartaric acid is around 28,000 MT with expected 
growth in food and other uses with a price of $6/kg, and the 
bulk price and composition of diacetyltartrate would agree 
with this value. The removal of tartrate from solutions dur-
ing wine processing by calcium is well practiced [193] 
and high yield precipitation is obtained in the presence of 
excess calcium chloride.

Studies of biosynthesis of tartaric acid in plants [64] 
showed a pathway from ascorbate [46, 47] involving the 
reactions from 2-keto l-gluconic acid, l-idonic acid, 5-keto 
d-gluconic acid, and l-threo-tetruronate, and the enzyme cat-
alyzing the step from 5-keto gluconic acid to idonic acid was 
identified and characterized; however, not all enzymes or 
genes encoding the pathway were identified in Vitis vinifera 
(grape). This pathway is interesting in that a corresponding 
enzyme exists in E. coli [11, 12] and further studies showed 
the presence of genes capable of reducing 2,5-diketogluco-
nate to 5-keto gluconate [221]. The pathway starting from 
oxidation of glucose to gluconic acid by glucose dehydroge-
nase goes well and enzymes from Gluconobacter species are 
efficient in this catalysis. The formation of 5-keto gluconic 
acid has been described and the enzyme has been character-
ized [55, 71, 74, 133, 134]. An enzyme from Gluconobacter 
suboxydans, 5-ketogluconate dehydrogenase, forms 5-keto 
gluconic acid from gluconic acid and upon cloning into E. 
coli, the natural E. coli transketolases can form the semial-
dehyde precursor of tartaric acid from 5-keto gluconic acid 
which is oxidized to form some tartaric acid [161]. It has 
been shown that 5-keto gluconic acid can be converted in the 
presence of vanadate into tartaric acid [99, 131]. Studies of 
engineered Gluconobacter oxydans have shown conversion 
of glucose to 5-keto gluconic acid [133].

A second way to metabolize tartaric acid has been iden-
tified and operates in the utilization of tartaric acid for 
growth. This pathway involves the l-tartaric acid dehy-
dratase genes of E. coli [152] and other organisms, and 
allows utilization of d-tartrate [156, 157] or l-tartrate [84, 
206]. The d-tartrate family of enolases has been reviewed 
[220]. The regulation of the l-tartrate dehydratases in E. 
coli has been studied [94] and ygiP (ttdR) is a positive 
regulator [145]. Tartrate transport via a tartrate/succinate 
antiporter tdtT (ygjE) has been defined [95]. The general 
pathway of utilization of tartrate is through dehydration to 
oxaloacetate, and conversion to malate, which can either 
generate pyruvate (aerobically) or be converted to fumarate 
and reduced to succinate (anaerobically). If these reactions 
operated in the opposite direction and used oxaloacetate to 
form tartrate, this route might allow a high yield of tartrate 
to be obtained. The activity of fumarase A from E. coli in 
catalyzing the keto-enol isomerization of oxaloacetate has 
been reported [59].

There is little literature on the metabolic engineer-
ing of tartrate production. A potential design for l-tartrate 
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production could be based on previous work with oxaloac-
etate-derived diacids and the experience of workers inter-
ested in pyruvate formation [29, 222–224]. To obtain opti-
mal production of tartrate, the pathway from oxaloacetate 
would seem preferable since it could generate two mol-
ecules of tartrate from one molecule of glucose with CO2 
fixation and would operate aerobically. The route from 
glucose via 5-keto gluconic acid which is oxidized to form 
some tartaric acid [161] would generate one molecule from 
glucose. The host strain for tartrate generation would need 
to have mutations blocking the pathway of pyruvate or PEP 
conversion to acetyl-CoA (aceEF, pflB) or PEP conversion 
to pyruvate (pykF, pykA). Other genes to be inactivated in 
the host chromosome would be mdh to remove the possible 
conversion of oxaloacetate to malate, and the gltA gene to 
remove possible reaction of oxaloacetate to produce citrate. 
If oxaloacetate was found to be degraded by decarboxyla-
tion, the gene eda, encoding oxaloacetate decarboxylase, 
could be inactivated. Methods to enhance conversion of 
phosphoenolpyruvate into oxaloacetate exist via either the 
feedback-resistant plant PEPC we previously used [117, 
118] or an energetically favorable phosphoenolpyruvate 
carboxykinase derived from E. coli [229, 231], A. succinic-
iproducens [103] and A. succinogenes [96, 107]. The prob-
lem is that these reactions of forming tartrate from oxaloac-
etate are reversible and there is no direct driving force for 
formation of the product. The means by which tartrate can 
build up in plants should be better understood and the avail-
ability of suitable plant-derived pathways would stimulate 
further engineering research toward production of this use-
ful compound.

Itaconic acid (IA) is an unsaturated dicarboxylic acid 
with one methylene group adjacent to one of the carboxylic 
acids. IA has wide use in agricultural, industrial, medical 
and pharmaceutical applications [142, 205]: its conversion 
to methacrylic acid [106] and use in polymers where its 
addition as a co-monomer gives special character to resins 
and latex. Its use in coatings, adhesives and textile indus-
tries makes it a valuable chemical. Polyitaconic acid can 
chelate calcium making it useful in water treatment (Itaco-
nix). The highly acidic polymer containing itaconic acid is 
biodegradable and useful in detergents, water treatment and 
as a superabsorbent polymer, thickening agent, binding and 
sizing agent and emulsifier. These characteristics allow IA 
to serve in many versatile applications [142] including in 
oral drug-delivery [20] and dental glass-ionomer cements 
[138, 209]. IA has been categorized as an important renew-
able chemical by the United States Department of Energy 
[203]. Each year, more than eighty thousand tons of IA is 
produced [142]. The price of IA is now around $2/kg [142] 
and the market has been continually growing. Chemical 
synthesis methods for IA have been developed, but none of 
these processes were practiced commercially due to high 

costs. Instead, the main route for production of IA was via 
fermentation of Aspergillus terreus. However, using the 
fungus confronts several disadvantages, as described for 
fumaric acid.

In the IA production pathway of A. terreus, glucose is 
degraded through glycolysis and forms citrate in the TCA 
cycle. Next, citrate is dehydrated by aconitase (Acn) to 
form cis-aconitate in mitochondria. The cis-aconitate is 
transferred to the cytoplasm and decarboxylated by cis-
aconitate decarboxylase (CAD) to IA. In the pathway 
according to Fig. 6, two enzymes, cis-aconitate decar-
boxylase (CAD) and aconitase (Acn), are crucial for the 
biosynthesis of IA. Although CAD was discovered in the 
cell lysate of A. terreus [15], CAD was not isolated as a 
homogeneous protein until 2002 [52]. CAD is a 55-kDa 
protein and has optimal pH and temperature of 6.2 and 
37 °C, respectively, with a Km of 2.45 mM for cis-aconi-
tate. Moreover, IA production correlates with CAD activ-
ity, meaning that CAD is essential for IA production [52]. 
The ATEG_09971 gene (CAD1) from A. terreus NIH2624 
was confirmed to code for CAD and the transformed CAD1 
gene has been expressed a functional protein in yeast. The 
other key enzyme is aconitase that catalyzes the reversible 
inter-conversion of citrate to isocitrate via cis-aconitate in 
the citric acid cycle, where a [4Fe-4S] cluster is required 
for the binding of these substrates at the catalytic site [13]. 
The proposed mechanism of aconitase activity involves cit-
rate dehydration to form cis-aconitate, which is isomerized 
by rotation of 180° around the double bond; the isoform of 
aconitate is then hydrated to form isocitrate [105]. While 
most aconitases convert citrate to aconitate and then con-
vert aconitate to isocitrate, the enzyme desired for aconitate 
conversion to itaconate would not have the isocitrate-form-
ing function or be effectively competed by the decarboxy-
lase. Beyond producing itaconic acid, a mutant strain of A. 
terreus has been patented for the production of cis-aconitic 
acid [73]. It is likely that the CAD1 gene in this strain may 
have become nonfunctional. Consequently, this mutant 
of A. terreus accumulates the intermediate, cis-aconitate, 
without further degradation.

There has been considerable interest in the engineer-
ing of this pathway and a number of genetically engi-
neered organisms were reviewed [100, 176]. Information 
of the past few years is briefly summarized and compared 
to enhancement of production using Aspergillus species. 
Improvement of A. terreus through genetic engineering 
showed an improvement of production of 9.4 and 5.1 % 
by overexpressing cis-aconitate decarboxylase and mfsA 
(major facilitator transporter for export of itaconate) [77] 
and the important role of transporters has been stressed 
[188]. Mitochondrial expression of cis-aconitate decar-
boxylase or aconitase was found to be superior to cyto-
solic expression in A. niger indicating that location of 
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the enzymes in this host is important [22]. The effect of 
enhanced glycolytic flux due to a shorter 6-phosphofructo-
1-kinase that was resistant to citrate inhibition was tested 
by the insertion of the altered A. niger pfkA gene into A. 
terreus, and was found to increase productivity of itaconic 
acid [182]. The use of computational models to identify 
genes that could be altered to improve itaconate production 
has been employed in yeast and A. terreus. Engineering 
yeast to form itaconate achieved 168 mg/L upon identifica-
tion of novel gene disruptions using in silico methods and 
overexpression of cis-aconitate decarboxylase. Among the 
proposed knockouts, mutations in ade3, bna3 and tes1 had 
a notable effect [21]. A genome-scale model of A. terreus 
was made and a set of pathway genes were identified for 
experimentation [120].

Conclusions and perspective

Metabolic engineering has been developed into a power-
ful enabling tool to create industrially relevant strains for 
the production of fuels and chemicals. Significant advances 
made in a number of areas, including software for meta-
bolic pathway design, analytical techniques for metabolite 
analysis, high-throughput techniques for gene expression 
profiling, and synthetic biology for constructing genetic 
circuit/networks, have greatly increased the pace of the 
strain development process. While redirecting carbon flux 

to the desired product remains the major goal of these met-
abolic engineering efforts, and efforts to attain a high mass 
yield of product from the carbon source are of fundamen-
tal and economic importance; redox balance as discussed 
in this review can also play an important role in the strain 
development and optimization process. A number of arti-
cles have focused on the carbon pathways and minimizing 
the loss of carbon so as to achieve a high carbon yield of 
product from feedstock, and particularly, the approach of 
using information from various “omics” measurements to 
provide a global picture of the cell metabolic network and 
how it might be improved by such a system biotechnol-
ogy perspective, where in silico models can suggest new 
genetic modifications to examine.

To provide the optimal amount of redox for the process, a 
number of strategies have been proposed and utilized. Here, 
we discuss a few general approaches. For enhancement of 
the total redox available for use in production of such highly 
valuable compounds as biofuel molecules or longer chain, 
largely hydrocarbon organic acids, it is important to limit 
the amount of redox (as NADH) that is oxidized by oxygen 
while maintaining active cell processes. There are culture 
processes that seek to use microaerobic culture conditions 
as a means to limit excessive conversion of the carbon feed-
stock to CO2. Efforts to limit production of CO2 through 
genetic means have also been reported [149, 234]. Addi-
tional strategies in this regard are those that seek to recap-
ture redox before it is used in the formation of hydrogen 

Fig. 6  Scheme for itaconate 
production in E. coli. Red X 
indicates genes or pathways 
to be inactivated and green 
pathways indicate those to be 
operating efficiently
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or other undesired compounds, or in the recycling of com-
pounds formed by the cell, e.g. formate, to yield their redox 
so it can be used to drive reductive reactions in the cell and 
increase yield of redox-demanding compounds. Of course, 
efforts to add extra reducing power to the culture through 
adding compounds such as formate, hydrogen or reduced 
sugars while enabling the cell to effectively use those addi-
tional substrates at the same time it makes the desired highly 
reduced products, e.g. longer chain organic acids. The most 
appropriate strategy in terms of culture conditions, feed-
stock, host and the effect of any genetic manipulations on 
the cell’s ability to robustly form product in an economic 
manner must be considered in the generation of an industri-
ally useful process.

Another general consideration is providing the right 
reduced cofactor needed, NADH or NADPH, for the path-
way or eliminating side reactions that consume the desired 
carbon molecule or reduced cofactor. One of these that has 
received attention is the imbalance of engineered yeast 
growing with xylose where the lack of the proper cofac-
tor can lead to undesired low yield of ethanol from xylose 
and formation of a reduced sugar. The main approaches for 
limiting the imbalance are to change the specificity of the 
particular reaction by protein engineering so it will use the 
alternative cofactor, e.g. converting the NADPH specificity 
to NADH preferred. This strategy can work well and the 
desired pathway/network can be made more efficient to 
make better use of the available profile of reduced cofactor 
present in the cell under the desired culture conditions.

Another approach is to alter the host so it can provide 
the appropriate reduced cofactor availability by pathway 
alteration that will proportionate the flow of carbon through 
pathways that generate NADPH, for example, the pentose 
pathway, rather than so much through the regular glyco-
lytic pathway [8, 140]. Other genetic approaches in mak-
ing a host with higher availability have included replacing 
a normally NADH forming step with a NADPH forming 
step using an enzyme that has different specificities, from 
a different organism, a known mutant or a protein engi-
neered version. Such a strategy has been reported with the 
GAPDH step of glycolysis [31, 78, 109, 130, 198]. The 
cell also contains enzymes that serve as transhydrogenases 
to interconvert NADH and NADPH, and these can also 
contribute and provide a higher availability of the desired 
cofactor in some circumstances.

In metabolic engineering, it is becoming more widely 
appreciated that redox balancing and overall meshing of the 
carbon and redox pathways need to be considered in gen-
erating an effective biocatalyst and that such redox contri-
butions can have significant impact on the overall growth 
and efficiency of the production process. It is anticipated 
that more productive strains will be obtained by maintain-
ing a carbon flux coupled with a proper redox and preferred 

cofactor balance, such that redox networks are as well 
engineered as the carbon flow networks in the engineered 
organism.
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